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protons will be observed. When the lifetime is long 
compared to this quantity, the epr spectrum is that of 
one conformation. In the intermediate case, alternat
ing line widths result. The fact that the metal hyper-
fine splitting remains unbroadened as the temperature 
is raised suggests that the exchange process is intramo
lecular rather than intermolecular. 

An alternate explanation for the nonequivalency of 
the four methylene protons is that the four-membered 
ring is skewed. However, we have found that when 
BCB is reduced in dimethoxyethane (90%) and hexa-
methylphosphoramide (10%) or in dimethoxyethane 
with crown ether the four methylene protons are equiv
alent even at —95°. This evidence strongly supports 
the thesis that the four-membered ring is still intact 
after reduction and the nonequivalency is caused by 
ion pairing. 
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Mass Spectral Rearrangements. 
A Silyl McLafferty Rearrangement 

Sir: 

Volatile trimethylsilyl derivatives have been a popu
lar choice for vapor phase chromatographic separation 
of nonvolatile materials. This has led to extensive 
study of the mass spectra of these derivatives for alco
hols,1'2 carboxylic acids,3 and other functional groups.4 

The mass spectra of functionalized organosilicon com
pounds per se have only been slightly examined.5 We 
have observed in the mass spectrum of methyl 4-tri
methylsilylbutyrate6 two novel intramolecular rear
rangements involving the silyl center. 
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The peak at m/e 146 in the mass spectrum of methyl 
4-trimethylsilylbutyrate results from migration of the 
trimethylsilyl group from the 7 carbon of the alkyl 
chain to the positively charged carbonyl oxygen of the 
ester functionality with simultaneous loss of ethylene 
(eq 1). 

H 1 C - L C H 1 (CHj)3SL 

H2CTf̂ -O- — 1 + I (l) 

2 ^ C H N C H 3 -H2C^ ^ O C H 3 

This rearrangement is similar to the McLafferty rear
rangement of methyl esters,12 with the notable difference 
that a trimethylsilyl group is transferred rather than a 
hydrogen. By comparison, alkyl groups are not nor
mally transferred from the 7 carbon to the carbonyl 
oxygen via the McLafferty rearrangement. This rear
rangement is particularly unusual in that a similar pho
tochemical rearrangement of a trimethylsilyl group 
from carbon to oxygen does not occur on photolysis of 
5-trimethylsilyl-2-pentanone.13 Hence, although the 
normal mass spectral McLafferty rearrangement of 
esters is related to the photochemical Norrish type II 
cleavage of ketones, the silyl McLafferty rearrangement 
finds no analogy in a photochemical silyl Norrish type 
II cleavage13 (eq 2). 

The base peak in the mass spectrum of methyl 4-tri
methylsilylbutyrate is at m/e 73. This is due to the tri-
methylsiliconium ion, while the peak at m/e 159 results 
from loss of a methyl group from the parent ion. Frag
mentation at such a highly branched center producing 
these two ions is a highly favored process.14'15 The 
second most intense peak occurs at m/e 89. This ion 
is the dimethylmethoxysiliconium ion which results 
from migration of a methoxy group from the ester func
tionality to the siliconium ion center with loss of 
C4H6O, probably as ethylene and ketene. The obser
vation of the expected metastable ion at m/e 49.8 (calcd 
892/159 = 49.8) provides additional evidence for this 
rearrangement (eq 3). This rearrangement is unim
portant in the case of a similar carbonium ion16 (eq 4). 

The final important rearrangement ion is the peak at 
m/e 131. This ion is most probably formed by loss of 
a methyl radical from the initially formed silyl Mc
Lafferty rearrangement ion m/e 146. The observation 
of the expected metastable ion at m/e 117.5 (calcd 1312/ 
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146 = 117.54) provides additional evidence in sup
port of this process (eq 5). 

An alternative fragmentation process which could 
have led to this same ion—previously favored by us6— 
involves attack of the carbonyl oxygen on the siliconium 
ion center of the ion m/e 159 with simultaneous loss of 
ethylene17 (eq 6). While this rearrangement was at
tractive, it is not supported by the observation of a 
metastable ion at m/e 107.9 (calcd 1312/159 = 107.9). 
Hence, we must conclude that the ion m/e 131 arises 
by loss of a methyl radical from the silyl McLafferty 
rearrangement ion. 

To verify the structures of these rearrangement ions, 
the mass spectra of the methyl-d3 ester, as well as that of 
the methyl 4-trimethylsilyl-2,2-dideuteriobutyrate, were 
examined. They were completely in accord with the 
assigned structures.18 

A possible driving force for the rearrangement of a 
methoxy group to the siliconium ion center is the high 
silicon-oxygen bond strength.19 The greater strength 

(17) This observation places serious doubt on the rearrangement 
process we have previously discussed for the formation of the m/e 105 
ion in the mass spectrum of methyl 3-trimethylsilylproprionate.8 Studies 
to clarify the source of this ion are continuing. 
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of a silicon-oxygen bond compared to that of a hydro
gen-oxygen or a carbon-oxygen bond must be impor
tant also in the silyl McLafferty rearrangement. The 
possibility that silicon can form a pentacoordinate 
transition state by use of its 3d orbitals may also favor 
this migration of the trimethylsilyl group. 

80 90 100 110 120 130 110 150 160 170 

Figure 1. Methyl 4-trimethylsilylbutyrate. 
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Enzymat ic and Nonenzymat i c Demethylat ion of 
Methy lcobalamin and of Abiogenic Coba lox ime M o d e l 
Substrates . Methane Biosynthesis by 
Methanobacillus omelianskii1 

Sir: 

Extracts of the methanogenic bacterium Methano
bacillus omelianskii (MOH)2 have recently been shown3 

to utilize methylcobalamin and, most surprisingly, the 
completely abiogenic methyl cobaloximes as substrates 
for methane evolution. Reaction 1 shows an absolute 
requirement for catalytic amounts of ATP and factor 
III ((Co) denotes the cobaloxime, [Co] the cobinamide 
moiety).4 

(1) This research was supported by Grant GP 12324 of the National 
Science Foundation. 

(2) M. P. Bryant, B. C. McBride, and R. S. Wolfe, / . Bacterio!.. 95, 
1118 (1968). 

(3) B. C. McBride, J. M. Wood, J. W. Sibert, and G. N. Schrauzer, 
/ . Amer. Chem. Soc, 90, 5276 (1968). 

(4) Factor III is cobalt(III) 5-hydroxybenzimidazolylcobamide: 
J. M. Wood and R. S. Wolfe, Biochemistry, 5, 3598 (1966), the natural 
cofactor. However, vitamin Bisa, the corresponding cobamide with 

Communications to the Editor 


